
 

 

    

 

A case study from South Sumatera and East 
Kalimantan, Indonesia 

Image credit: Photo by Rhett Butler | mongabay.com 

© Vladimir Timofeev | Dreamstime.com 



Tree cover loss detection using optical and radar sensors 

A case study from South Sumatera  

and East Kalimantan, Indonesia 

 

 

 

 

 

 

 

 

 

 

 

 

 

International Institute for Applied Systems Analysis 

Vienna, January 2022 

 

The RESTORE+ project is implemented by the International Institute for Applied Systems Analysis (IIASA), World Agroforestry Centre (ICRAF), 
Brazil National Space Research Agency (INPE), Brazil Institute for Applied Economic Research (IPEA), UN Environment-World Conservation 
Monitoring Centre (UNEP-WCMC), World Resources Institute (WRI) Indonesia, World Wildlife Fund (WWF) Indonesia, Mercator Research 
Institute on Global Commons and Climate Change (MCC), Environment Defense Fund (EDF) and London School of Economics (LSE) Grantham 
Research Institute on Climate Change and the Environment. 

The project is part of the International Climate Initiative (IKI). The German Federal Ministry for the Environment, Nature Conservation and 
Nuclear Safety (BMU) supports this initiative on the basis of a decision adopted by the German Bundestag.



i 

Authors: 

Adrian Dwiputra, University of British Columbia 

Hadi, International Institute for Applied Systems Analysis 

Neha Joshi, International Institute for Applied Systems Analysis 

Steffen Fritz, International Institute for Applied Systems Analysis 

 

 

Publication Editing and Layouting: 

Charlotte Kottusch, Enrico Confienza 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Required Citation: 

Dwiputra, A., Hadi, Joshi, N., Fritz, S. (2022). Tree cover loss detection using optical and radar 

sensors. A case study from South Sumatera and East Kalimantan, Indonesia. RESTORE+ Working 

Paper, Vienna. 

 

 

 

 

Copyright:  

This report is licensed under the Creative Commons non-commercial 3.0 licence. To view a copy of 

this license, visit: https://creativecommons.org/licenses/by-nc/3.0/deed.en_US 

 





i 

• We explored the potential of radar and optical remote sensing analysis to map tree cover loss 

in tropical forest landscapes in two provinces in Indonesia: South Sumatera (SS) and East 

Kalimantan (EK).    

• Tree cover loss was mapped using three approaches: 1) optical satellite images, 2) radar data, 

and 3) the combination of optic-based and radar-based change maps using simple overlay 

between maps produced using 1) and 2). 

• The optic-based change maps were produced using the Continuous Change Detection and 

Classification (CCDC), while the radar-based change maps were produced using the 

backscatter difference thresholding approach. Both optic-based and radar-based approaches 

were implemented in Google Earth Engine (Gorelick et al., 2017). 

• Combining the optic-based map with the radar-based map yielded the best mapping accuracy 

values, suggesting that more sophisticated approaches to combine the two sensor types 

should be explored further, for example, by fusing the optical and radar data using machine 

learning algorithms, e.g., random forest (Breiman 2001).  
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Countries with high natural ecosystem cover play an important role in climate change mitigation and 

adaptation actions. In many cases, such as in Brazil and Indonesia, the natural ecosystems are under 

threat of anthropogenic disturbances. Irreversible ecosystem degradation often follows intensive 

disturbance events, such as massive deforestation and human-induced wildfires in tropical rainforests. 

Therefore, avoiding further deforestation and degradation while promoting ecosystem restoration is 

a pragmatic step to address the global climate and biodiversity crises. 

As we observe an increase in the official commitments made by the world governments to reduce 

deforestation and ecosystem degradation over the last decade, systematic monitoring of the 

fulfilment of the pledges has never been more important. Essential resources required in the 

monitoring are maps that show the occurrence, location, and area of forest degradation and 

deforestation, which are often associated by the major loss of tree cover, in landscapes of interest. 

However, tree cover loss maps are not always available to support continuous monitoring of natural 

land cover. Data gaps are one of the major challenges in establishing a transparent monitoring system 

to monitor and verify the climate and biodiversity commitments. 

Remote sensing can offer a potential solution to close the identified data gaps. However, the 

conventional tree cover loss mapping using optical satellite images often does not work as effectively 

in tropical landscapes as in other areas due to the persistent cloud cover. A potential solution to 

improve the tree cover loss mapping is by complementing the optical satellites images with radar 

satellites observations. The longer wavelengths used in radar remote sensing can penetrate clouds 

and thus allow data acquisition over landscapes of interest even in cloudy environments (Sabins 1997). 

This report provides technical documentation of our attempt to map tree cover loss using radar and 

optical satellites in two provinces in Indonesia, namely South Sumatera and East Kalimantan. We 

aimed to contribute relevant empirical information to improve remote sensing techniques in mapping 

tree cover loss in the dynamic yet data-limited tropical forest landscapes. 

1.1 Objectives 

We explored the potential of radar and optical remote sensing analysis to map tree cover loss in the 

two study provinces in Indonesia, South Sumatera and East Kalimantan. Evaluating the accuracy and 

sensitivity of optical and radar remote sensing in mapping tree cover loss provides empirical 

information on the pros and cons of the two sensor types used, which will be valuable in determining 

the most effective approach to monitor land cover dynamics in data-limited tropical forest landscapes.  

In the context of the RESTORE+ project, this study evaluates the proposed approach along with 

descriptions of technical steps for implementation. The aim is to allow relevant 

stakeholders/landscape managers to gain valuable technical insights to generate relevant land cover 

monitoring data that can be used in formulating and evaluating restoration strategies in their 

landscapes of interest. 
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2.1 Study Area 

Indonesia is one of the tropical countries with the highest potential for carbon sequestration from 

avoided deforestation and forest degradation. The exceptionally high biodiversity in the country, with 

high endemism, is challenging to conserve due to anthropogenic pressures. For example, rapid forest 

conversions into agricultural lands are commonly found as the economy develops. The forest 

conversion releases a significant amount of greenhouse gas emissions, exacerbating global climate 

change, and contributes to biodiversity loss through habitat loss or degradation. 

This study covers two provinces in Indonesia that hold environmental significance: South Sumatera 

(SS) and East Kalimantan (EK). The selected provinces are relatively advanced in terms of climate 

change mitigation and biodiversity conservation commitments. For instance, both provinces have 

formulated green economic growth action plans that incorporate environmental indicators in their 

economic development plans. 

The landscapes of SS and EK are home to high-carbon stock natural forests, each with unique 

characteristics. A massive proportion of the carbon stock in SS is concentrated in the 1.3 million 

hectares of tropical peat swamp forest as below-ground organic matter and above-ground plant 

biomass (The Ministry of Environment and Forestry of Indonesia 2021). In contrast, EK has only 0.3 

million hectares of peatland area, and thus, relatively smaller carbon is stored as below-ground peat 

(The Ministry of Environment and Forestry of Indonesia 2021). Natural land cover in the two provinces 

has been reduced in the recent decade, mostly due to increased land demand for economic activities 

such as plantations expansion, among other anthropogenic activities that affect the natural ecosystem 

intactness, such as timber extraction associated with both legal and illegal logging activities. Wildfires 

associated with fire used in land clearing activities exacerbate the natural ecosystem degradation in 

the two provinces (Dewi et al., 2015). 

2.2 Methods 

The analysis comprised change mapping using three approaches: 1) optical satellite images, 2) radar 

data, and 3) the combination of optic-based and radar-based change maps, as well as the evaluation 

of the produced maps. 

 

The optic-based change maps were produced using the Continuous Change Detection and 

Classification (CCDC) algorithm developed by Zhu & Woodcock (2014). The algorithm implementation 

in Google Earth Engine (GEE; Gorelick et al., 2017) by the GEE team was used. The 

input was Normalized Difference Moisture Index (NDMI = (NIR-SWIR1)/(NIR+SWIR1)) dense time 

series calculated from all available clear-sky Landsat observations (F mask) from 1984 to 2019. The 

algorithm was run with the parameter of minimum consecutive anomalous observations to be flagged 

as land change equals six (6) observations to minimize the false-positive detection rate. (note for more 
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sensitive/less conservative detection, the fewer required number of consecutive anomalies, e.g. 

four or/and lower chi-square probability threshold, e.g. 0.90 for detection could be set, depending on 

validation results). Multitemporal cloud masking (T-mask) was not applied. The default values for 

the other parameters of the algorithm were used. Of the detected change events, only the events with 

negative change magnitude—indicating tree cover loss—were kept. Post-processing based on the size 

of contiguous change pixels was not yet applied. 

 

The radar-based change maps were produced using the backscatter difference thresholding approach. 

We implemented the steps in Google Earth Engine (GEE) just like the optic-based change to 

standardize the framework. The inputs were ortho-rectified and terrain-corrected gamma naught 

backscatter data acquired by several radar satellites, namely Sentinel-1, ALOS-PALSAR/PALSAR-2. 

Since Sentinel-1 and ALOS-PALSAR/PALSAR-2 use different wavelengths in data acquisition, the data 

from the two different sources can be expected to have high complementarity since they capture the 

state of the observed landscapes differently. Sentinel-1 data are only available for the 2015-2018 

analysis period as the mission began in late 2015. 

 

In general, forests and other tree-dominated lands are associated with higher radar backscatter values. 

Therefore, significant reductions of backscatter values are associated with major tree cover loss as 

observed in the events of deforestation or forest degradation. The threshold of the backscatter 

reduction associated with tree cover loss events was determined using expert judgement following 

multiple trials of visual interpretations. Since radar data are associated with relatively high noise 

content, several masking and filtering procedures were applied to reduce the noise, such as the 

refined Lee filter, mask based on the Hansen global forest change map (Hansen et al. 2013), and 

terrain/topography-based mask. Among the applied filters, post-processing based on the size of 

contiguous change pixels was applied. Change patches composed of less than 60 spatially connected 

pixels were omitted. 

 

Despite the variations in the spatial resolution of the different satellite data used in the analysis, all 

change maps were produced as rasters with 30-m pixel size. While the final raster resolution matches 

the optical satellite data's resolution, the radar data used originally have higher spatial resolutions. 

However, the high noise content in radar data was one of the main reasons why the radar-based maps 

were resampled into the coarser spatial resolution of 30-m. 

 

We combined the change maps derived from the optic-based and radar-based approaches to create 

other maps. In the first combined map that we will refer to as “Optical-radar union”, after we 

overlayed the optic-based with the radar-based change map, the pixels were assigned as "change" 

when at least one of the two maps detected a tree cover loss occurrence. In the second one (“Optical-

radar intersection”), we only took the overlap between the optic-based and the radar-based change 

maps.  

 

We evaluated the three produced maps (i.e., the optical-only, radar-only, and combined change maps) 

in terms of the overall accuracy, sensitivity, and specificity. The evaluation was conducted with 

reference data from a field survey conducted under the RESTORE+ Jelantara campaign and a desktop-

based survey using CollectEarth software (Bey et al. 2016). Through Jelantara campaign, hundreds of 

geographic points in South Sumatera were surveyed, 208 of which were used as part of the reference 
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data for the change map validation. Many surveyed points were filtered out due to the low confidence 

of the collected information. 

 

The majority of the reference data were collected through the interpretation of very-high-resolution 

satellite images in CollectEarth software. CollectEarth provided simultaneous access to different 

platforms that hosted high-resolution satellite images, which were observed to detect any 

occurrences of tree cover loss within the studied periods. The sampling design implemented was a 

combination of random points and cluster sampling to maximize the point collection. First, the 

centroids of the sampling cluster were distributed in a stratified random manner based on the 

combined change maps in Area2 GEE tool, which targeted overall accuracy's standard error of 0.018. 

The other 8 points were then spread around the centroid with the spacing of at least 30 meters (1-

pixel side length) to maintain independence between each of the points. While the assignment of the 

values of change/no change was conducted per point, most of the points in the clusters were found 

to have experienced the same change, probably due to the large scale of the changes in the observed 

landscapes. The total number of reference data used in the evaluation is provided in the following 

table. 

Table 2.1 Reference points used in results evaluation 

Province Period 
Number of Points 

change no-change 

East Kalimantan 2010-2015 198 216 
East Kalimantan 2015-2018 153 351 
South Sumatera 2010-2015 216 469 
South Sumatera 2015-2018 207 487 

 

Figure 2.1 An example of very-high resolution satellite images interpretation in Collect Earth 
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In the validation/evaluation step, we followed the accuracy estimation steps described in Olofsson et 

al. (2014), which yielded the area-adjusted overall accuracy (OA) estimate and its associated 

confidence interval for each map. The producer’s accuracy (PA) of the map was calculated by dividing 

the correctly mapped change occurrences by the total number of change occurrences detected in the 

reference data (Barsi et al. 2018). On the other hand, the User’s accuracy (UA) of the map was 

calculated by using the total number of reference points that coincided with the changes depicted in 

the map as the denominator (Barsi et al. 2018). PA depicts the sensitivity, while UA indicates the 

specificity of the produced maps (for more details see 3.2). The best mapping approach would be the 

one that produced a map with the highest overall accuracy, sensitivity, and specificity. 

 

 

Figure 2.2 A simplified confusion matrix used in validation step. Adopted from Barsi et al. 2018 
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Figure 3.1 Detected changes in SS and EK in 2010-2015 and 2015-2018 periods 

 

Detected Tree Cover Loss 
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The produced maps (Figure 3.1) show the detected tree cover loss in EK and SS in the 2010-2015 and 

2015-2018 periods. The distribution of the coloured “change” pixels indicates a very small agreement 

between the optic-based and the radar-based change maps, which may be related to the fact that the 

optical and radar sensors are sensitive to different properties of land covers. There was no clear 

pattern of the areas where the two maps agree and areas where the two disagree. It is worth noting 

that the major wildfire in Ogan Komering Ilir district in the eastern part of SS in 2015 (Dewi et al. 2015) 

was detected in the optic-based map but ‘flew under the radar’ in the radar-based change map. 

 

Figure 3.2 Area-adjusted overall accuracy values associated with the change maps derived from different 
approaches implemented in the analysis 

3.1 Overall Accuracy 

The change map derived by taking all of the changes detected by either the optic-based or radar-based 

change maps had the highest overall accuracy with the overall accuracy > 75% (Figure 3.2). This finding 

shows that the most accurate change detection can be obtained by combining the optical and radar 

approaches. Another takeaway from the results is that by itself, the optic-based change map 

outperformed the radar-based change map even though the two approaches had only moderate 

accuracies. The low accuracy of radar-based change maps might be associated with the higher noise 

content in radar data relative to the optical images despite the higher spatial resolution. 
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Figure 3.3 Producer’s (PA) and User’s accuracy (UA) of the produced maps 

3.2 Producer’s and User’s Accuracy 

In general, both the optic-based and radar-based change maps have low producer’s accuracy (PA), 

which means that many changes that actually occurred, had been undetected (Figure 3.3). A 

combination of the two maps through a simple union increases the PA or the sensitivity. When we 

only considered the intersection between the optical- and radar-based maps, there was relatively 

lower PA. The optic-based change map has a slightly better capability in detecting the tree cover loss 

in EK.  However, the results were different in SS. The two studied periods showed inconsistent results: 

in 2010-2015, the radar-based map had a slightly better sensitivity relative to the optic-based map; in 

2015-2018, the optical-based map is more sensitive than the radar-based map. Further analysis is 

required to unveil the possible causes of the temporal variation. 

Similar to PA, User’s accuracy (UA) values also showed a difference between SS and EK (Figure 3.3). In 

SS, the optic-based map consistently had a higher UA level, or specificity, than the radar-based change 

map, while in EK, the radar-based map was superior to the optic-based map. The distinct results 

obtained from the two sites might suggest that the landscape features may affect the different sensor 

types’ ability to tell the true change apart from the false positives (commission error). When we only 

considered the intersection between the optical- and radar-based maps, there was relatively lower 

commission error and, hence, higher UA. Therefore, when specificity is prioritized, the areas where 

both the optical and radar change maps agreed are most useful. 

A more detailed look into the UA and PA of the produced maps is provided as confusion matrices in 

the Appendix: Confusion matrices. 
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The results of our exploratory analysis provide an empirical review of the utilization of optical and 

radar satellites in detecting tree cover loss in tropical forest landscapes. Given the similar performance 

of the optic-based and radar-based mapping as well as the simpler preprocessing and processing steps 

in optic-based change mapping, tree cover loss detection using optical satellites appears to be a good 

option to monitor the studied landscapes. However,  it should be noted that we expect different 

outcomes when other preprocessing and processing methods are implemented, e.g., by using a more 

sophisticated preprocessing (Small et al. 2021) or a more complex change detection algorithm 

(Durieux et al. 2019). 

In general, we learned that a better mapping accuracy could be obtained by combining the optic-

based map with the radar-based map. We only implemented a simple way of combining the two 

different sensor types in this work. However, more sophisticated approaches should be explored, for 

example, by fusing the optical and radar data using machine learning algorithms, like random forest 

(Breiman 2001). 

Despite our best effort in interpreting the very-high resolution satellite data, some degrees of 

uncertainty was present in reference data collection. Many survey points did not have a clear image 

that allowed useful interpretation, and even when they did, some of them had substantial cloud cover. 

This situation limited the number of usable reference data in the validation process because reference 

points associated with low interpretation confidence were omitted. This limitation highlights the 

importance of ground-based surveys in filling the gap in reference data. 

More systematic assessments are needed to explain the factors that cause the sensors to perform 

better in one context but not in other contexts. In addition, a more local-scale analysis at well-studied 

sites using different sets of input combinations is valuable in revealing the pros and cons of using 

different sensor types to detect tree cover loss under different biogeophysical contexts. 
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The overall accuracy (OA) values provided below are not identical with the area-adjusted overall 

accuracy used in the main body of the report. OA values provided below were calculated without 

taking into account the area of each class within the study sites. 

South Sumatera 2010-2015 

Optical 

Map\Ref noChange change Sum UA (%) 

noChange 399 108 507 78.7 

change 68 108 176 61.36 

Sum 467 216 683  
PA (%) 85.44 50  OA = 74.23% 

 

Radar 

Map\Ref noChange change Sum UA (%) 

noChange 310 88 398 77.89 

change 157 128 285 44.91 

Sum 467 216 683  
PA (%) 66.38 59.26  OA = 64.13% 

 

Optical-radar union 

Map\Ref noChange change Sum UA (%) 

noChange 269 45 314 85.67 

change 198 171 369 46.34 

Sum 467 216 683  
PA (%) 57.6 79.17  OA = 64.42% 

 

Optical-radar intersection 

Map\Ref noChange change Sum UA (%) 

noChange 440 151 591 74.45 

change 27 65 92 70.65 

Sum 467 216 683  
PA (%) 94.22 30.09  OA = 73.94% 
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South Sumatera 2015-2018 

Optical 

Map\Ref noChange change Sum UA (%) 

noChange 367 73 440 83.41 

change 119 133 252 52.78 

Sum 486 206 692  
PA (%) 75.51 64.56  OA = 72.25% 

 

Radar 

Map\Ref noChange change Sum UA (%) 

noChange 373 131 504 74.01 

change 113 75 188 39.89 

Sum 486 206 692  
PA (%) 76.75 36.41  OA = 64.74% 

 

Optical-radar union 

Map\Ref noChange change Sum UA (%) 

noChange 271 44 315 86.03 

change 215 162 377 42.97 

Sum 486 206 692  
PA (%) 55.76 78.64  OA = 62.57% 

 

Optical-radar intersection 

Map\Ref noChange change Sum UA (%) 

noChange 469 160 629 74.56 

change 17 46 63 73.02 

Sum 486 206 692  
PA (%) 96.5 22.33  OA = 74.42% 
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East Kalimantan 2010-2015 

Optical 

Map\Ref noChange change Sum UA (%) 

noChange 191 94 285 67.02 

change 25 104 129 80.62 

Sum 216 198 414  
PA (%) 88.43 52.53  OA = 71.26% 

 

Radar 

Map\Ref noChange change Sum UA (%) 

noChange 195 105 300 65 

change 21 93 114 81.58 

Sum 216 198 414  
PA (%) 90.28 46.97  OA = 69.57% 

 

Optical-radar union 

Map\Ref noChange change Sum UA (%) 

noChange 173 54 227 76.21 

change 43 144 187 77.01 

Sum 216 198 414  
PA (%) 80.09 72.73  OA = 76.57% 

 

Optical-radar intersection 

 noChange change Sum UA (%) 

noChange 213 145 358 59.5 

change 3 53 56 94.64 

Sum 216 198 414  
PA (%) 98.61 26.77  OA = 64.25% 
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East Kalimantan 2015-2018 

Optical 

Map\Ref noChange change Sum UA (%) 

noChange 250 61 311 80.39 

change 101 92 193 47.67 

Sum 351 153 504  
PA (%) 71.23 60.13  OA = 67.86% 

 

Radar 

Map\Ref noChange change Sum UA (%) 

noChange 275 68 343 80.17 

change 76 85 161 52.8 

Sum 351 153 504  
PA (%) 78.35 55.56  OA = 71.43% 

 

Optical-radar union 

 noChange change Sum UA (%) 

noChange 202 9 211 95.73 

change 149 144 293 49.15 

Sum 351 153 504  
PA (%) 57.55 94.12  OA = 68.65% 

 

Optical-radar intersection 

 noChange change Sum UA (%) 

noChange 213 145 358 59.5 

change 3 53 56 94.64 

Sum 216 198 414  
PA (%) 98.61 26.77  OA = 64.25% 

 

 

 


