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1 

 

This report describes the methodology to produce the national-scale land cover/land use map 

datasets for the given requirements of thematically-detailed national-scale restoration assessment in 

Indonesia under the RESTORE+ project. The methodology uses publicly available satellite datasets, 

Google Earth Engine cloud computing (Gorelick et al. 2017) as well as integrates crowdsourcing (citizen 

science) methodological component for generating training data and accuracy assessment data. The 

mapping source code (Earth Engine Javascript API) is openly available (link). 

The methodology is designed to meet the following requirements: 

• Thematic resolution. The classification scheme/typology (Table 1.1) was designed together 

with country partners to achieve the appropriate level of details for restoration assessment 

at national scale, and is compatible with existing classification schemes within the country. 

• Spatial resolution. A spatial resolution of 100 meter (1 hectare) was determined, which is 

considered sufficient for the national scale restoration assessment, as well as matches the 

available reference land cover/land use map (henceforth, “country reference map”), which 

are the main source of the training data for classification, and which are readily used in the 

restoration analysis. 

• Temporal resolution. A temporal resolution of annual i.e., 1-year time scale was determined. 

The current resulting map datasets were demonstrated for one year i.e., 2018. 

• Integrates crowdsourced training data. To integrate the crowdsourced training data, two 

classification scenarios were carried out, one with all classes relying on training data from the 

reference map (henceforth, “detailed-legend classification”), and another with the simplified-

legend classes crowdsourced to the general public (henceforth, “simplified-legend 

classification”). This was done to avoid “contaminating” the potentially higher-quality training 

data obtained via crowdsourcing (human verification) with the more uncertain training data 

derived directly from the reference map, as well as for practical reason i.e., timing of which 

the data became available at the time. The crowdsourced classes were Undisturbed Forest, 

Logged Over Forest, Oil Palm Monoculture, Tree Based Not Oil Palm, Cropland, Shrub, and 

Grass/Savanna. Details of the crowdsourcing campaign and dataset will be available in a 

separate publication (under review). 

• Explicit account of resulting map thematic (classification) uncertainty, as well as modular 

design for easy updates of class-specific training data. A key design of the classification 

methodology was the decomposition of the otherwise multiclass classification into separate 

binary (i.e., one-versus-others) classification scenarios, and producing class probability for 

each land cover/land use class as output. These layers of class probability were then combined 

by incorporating expert rules informed by feedbacks from local experts, to arrive at the final 

most-confident class label, with the associated per-pixel uncertainty. The per-pixel 

uncertainty layers include the “least confidence” uncertainty (calculated as one minus the 

class probability of the “primary classification” i.e., most-likely or classified highest-probability 

class label), and the “margin of confidence” (Monarch 2021) uncertainty (calculated as the 

difference between the class probability of the “primary classification” and the class 

https://code.earthengine.google.com/?accept_repo=users/hadicu06/RESTORE_cleaned
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probability of the “secondary classification”, the latter being the second-most-likely or 

second-highest-probability class label (Brown et al. 2020). 

The map datasets generated from the present methodological demonstration include:  

• Pre-processed covariates/features mosaics 

• Training data (from reference maps, and from crowdsourcing campaign with the participation 

of the general public in Indonesia) 

• Validation/accuracy assessment data (from expert workshops with local experts in Indonesia) 

• Predicted class probability maps for each class 

• Preliminary final most-confident class label, with the application of expert rules, for “primary 

classification” and “secondary classification”, as well as the per-pixel classification uncertainty 

In addition, an interactive web-based application (Google Earth Engine app) to collect training data 

with the guidance of on-the-fly classification results was built to facilitate training data collection in a 

collaborative approach engaging local experts from different regions following the approach of Souza 

et al. 2020.

Table 1.1 The land cover/land use classification scheme required for the map, and the definition of the classes, 
as provided by the local experts. 

Class ID 

(“Detailed 

Class”) 

Class name 

(Indonesian) 

Class name 

(translated) 
Class definition (Indonesian) Class definition (translated) 

1 “Hutan lahan kering 

primer” 

Undisturbed Dryland 

Forest 

“Tutupan hutan alami dengan 

kanopi yang rapat (>80%), 

spesies yang sangat beragam 

dan basal area yang relative 

tinggi. Secara mudah, hutan ini 

diindikasikan tidak adanya jalan 

logging. Pada citra satelit, 

diindikasikan dengan nilai index 

vegetasi dan band infrared yang 

tinggi, dan band tampak (visible) 

yang rendah.” 

 

“Natural forest cover with 

dense canopy (>80%), very 

diverse species, and relatively 

high basal area. They are 

indicated by the absence of 

logging roads. In the satellite 

image, they are indicated by 

high values of vegetation index 

and infrared band reflectance, 

and low values of visible bands 

reflectance.” 

2 “Hutan lahan kering 

sekunder” 

Logged-Over Dryland 

Forest 

“Tutupan hutan alam dengan 

kerapatan pohon yang bervariasi 

(30% - 80%) yang telah 

mengalami gangguan aktivitas 

manusia maupun aktivitas alam 

lainnya yang biasanya dicirikan 

oleh adanya jalan logging 

maupun bekas tebangan.”  

 

“Natural forest cover with 

varying tree density (30% - 

80%) that has experienced 

disturbances from human 

activities or other natural 

activities, usually characterized 

by the presence of logging 

roads or logging signs/marks.” 

3 “Hutan mangrove 

primer” 

Undisturbed 

Mangrove Forest 

“Tutupan hutan yang didominasi 

oleh pohon bakau yang berlokasi 

pada pesisir pantai dan tidak 

pernah mengalami penebangan 

maupun aktivitas manusia 

lainnya.” 

 

“Forest cover dominated by 

mangrove (‘bakau’) trees, 

located on the coast, and has 

never experienced logging or 

other human activities “ 

4 “Hutan mangrove 

sekunder” 

Logged-Over 

Mangrove Forest 

“Tutupan hutan yang didominasi 

oleh pohon bakau yang telah 

mengalami degradasi berlokasi 

di sekitar pesisir pantai dan 

pernah mengalami penebangan 

“Forest cover dominated by 

mangrove (‘bakau’) trees that 

has experienced degradation, 

located around the coast, and 

https://hadicu06.users.earthengine.app/view/interactive-classification-eng
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maupun aktivitas manusia 

lainnya.” 

 

has experienced logging or 

other human activities.” 

5 “Hutan rawa primer” Undisturbed Swamp 

Forest 

“Tutupan vegetasi alami yang 

berada pada lahan basah yang 

tergenang sementara maupun 

permanen, tidak pernah 

mengalami penebangan 

masalalu ataupun pengaruh 

aktivitas manusia yang biasanya 

dicirikan dengan mudah tidak 

adanya jalan logging, parit, 

maupun kanal.” 

 

“Natural vegetation cover that 

is situated on wetlands that are 

temporarily or permanently 

inundated, that has never 

experienced past logging or 

impacts of human activities 

that is usually characterized by 

the absence of logging roads, 

ditches, or canals.” 

6 “Hutan rawa 

sekunder” 

Logged-Over Swamp 

Forest 

“Tutupan vegetasi alami yang 

berada pada lahan basah yang 

tergenang sementara maupun 

permanen, yang telah 

mengalami penebangan 

masalalu ataupun pengaruh 

aktivitas manusia yang biasanya 

dicirikan dengan mudah dengan 

adanya jalan logging, parit, 

maupun kanal.” 

 

“Natural vegetation cover that 

is situated on wetlands that are 

temporarily or permanently 

inundated, that has 

experienced past logging or 

impacts of human activities 

that is usually characterized by 

the presence of logging roads, 

ditches, or canals.” 

7 “Agroforestri” Agroforestry “Tutupan vegetasi yang terdiri 

dari campuran komoditas 

perkebunan, buah-buahan, 

pohon berkayu, maupun 

tanaman semusim lainnya yang 

tumbuh secara bersama-sama 

dalalam satu waktu atau rotasi di 

dalam satu lahan.” 

 

“Vegetation cover consisting of 

a mixture of estate/plantation 

commodities, fruits, woody 

trees, or other seasonal 

plants/crops that grow 

together at one time or 

rotation within one land 

area/field.” 

8 “Hutan tanaman” Plantation Forest “Tutupan vegetasi pohon 

berkayu baik kayu lunak maupun 

keras yang ditanam secara 

monokultur untuk tujuan 

komersial. Hutan tanaman 

dalam skala luas biasanya 

dijalankan oleh pemegang 

konsesi, sedangkan dalam skala 

kecil biasanya dikelola oleh 

masyarakat local. Komoditasnya 

biasanya akasia, eucalyptus, 

pinus, jati, sengon, damar, dan 

lain-lain.” 

 

“Vegetation cover of woody 

trees, both softwood and 

hardwood, which are planted in 

monoculture for commercial 

purpose. Plantation Forest in a 

large scale are usually run by 

concession holders, whereas in 

a small scale usually managed 

by local communities. The 

commodities are usually acacia, 

eucalyptus, pine, teak, sengon, 

resin, and others.” 

9 “Karet monokultur” Rubber Monoculture “Tutupan vegetasi yang 

didominasi hampir 100% oleh 

tanaman karet dalam satu 

lahan.” 

 

“Vegetation cover that is 

dominated almost 100% by 

rubber trees within one 

area/field.” 

10 “Kelapa sawit 

monokultur” 

Oil Palm Monoculture “Tutupan vegetasi yang 

didominasi hampir 100% oleh 

tanaman kelapa sawit dalam 

satu lahan.” 

 

“Vegetation cover that is 

dominated almost 100% by oil 

palm trees within one land 

area/field.” 

11 “Monokultur lain” Other Monoculture “Tutupan vegetasi yang 

didominasi hampir 100% oleh 

tanaman perkebunan lain selain 

“Vegetation cover that is 

dominated almost 100% by 

monoculture/plantation crops, 
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karet dan kelapa sawit dalam 

satu lahan.” 

 

other than rubber or oil palm, 

within one land area/field.” 

 

12 “Rerumputan/padang 

rumput/savanna” 

Grass or Savanna “Tutupan vegetasi yang 

didominasi oleh tutupan rumput 

yang tumbuh secara alami. 

 

“Vegetation cover dominated 

by grass cover that grows 

naturally.” 

13 “Semak belukar” Shrub “Tutupan vegetasi yang 

didominasi oleh vegetasi bukan 

pohon dengan ketinggian tidak 

lebih dari 5-6 m, biasanya hasil 

dari perladangan berpindah, 

atau bekas tebangan yang telah 

terdegradasi, maupun suksesi 

alami dengan tegakan pohon 

yang belum terbentuk yang 

berumur 2-3 tahun.” 

 

“Vegetation cover dominated 

by non-tree vegetation with a 

height of not more than 5-6 m, 

usually the result of shifting 

cultivation, or ex logging areas 

that have been degraded, or 

natural succession with yet-to-

form tree stands that are 2-3 

years old.”  

14 “Lahan pertanian” Cropland “Tutupan vegetasi yang 

didominasi oleh tanaman padi 

(sawah), atau tanaman palawija 

maupun hortikultura (pertanian 

lahan kering).” 

 

“Vegetation cover dominated 

by rice (paddy), or “palawija” or 

horticultural plants/crops 

(dryland agriculture)”.  

 

“Palawija” crops: secondary 

food crops i.e. usually grown 

after main crop i.e. rice, on 

dryland. Examples are 

groundnuts, maize, cassava, 

soybean, and roots/pulses. 

Horticultural crops: fruits, 

vegetables, herbs, medicinal 

and ornamental plants. 

 

15 “Permukiman” Settlement “Tutupan yang didominasi oleh 

bangunan.” 

 

“Surface cover dominated by 

buildings.” 

16 “Lahan terbuka” Cleared Land “Tutupan lahan yang hampir 

100% tanpa tutupan vegetasi.” 

 

“Land cover that is almost 

100% without vegetation 

cover.” 

17 “Tubuh air” Waterbody “Tutupan yang didominasi oleh 

air, biasanya direpresentasikan 

dengan sungai, danau, waduk, 

tambak, dll.” 

 

“Surface cover dominated by 

water, usually represented as 

rivers, lakes, reservoirs, ponds, 

etc.” 
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The classification process consists of design of classification scenarios to fit the mapping data product 

and mapping methodological requirements, training data preparation and collection, satellite remote 

sensing data preparation and feature engineering (including ancillary datasets), supervised 

classification model calibration (training) to produce class probability maps, assembly of class 

probability maps into final most-confident class label (and per-pixel classification uncertainty 

measures) based on expert rules and integration of crowdsourcing data, and a preliminary validation 

(accuracy assessment) of the final detailed-legend land cover/land use map. 

Two classification scenarios were carried out, one for all detailed classes with the training data from 

the “country reference map” (“detailed-legend classification”), and one for a simplified class scheme 

with training data from crowdsourcing (“simplified-legend classification”). In the “detailed-legend 

classification”, as the available-to-use “country reference map” was produced for 2010, thus 

necessitating to use satellite data available for 2010 for temporally-consistent classification model 

training, followed by application of the trained model for the target demonstration year namely 2018. 

Further, due to the complex class typology required and the landscape heterogeneity in the vast land 

of the country, as recommended by local experts, the classification model calibration and application 

were applied separately for seven regions based on landscape characteristics namely Sumatera; 

Kalimantan; Java Madura Bali; Sulawesi; Nusa; Maluku; and Papua. An exception was for Rubber 

Monoculture class, for which an alternative training data source was used (Chapter 2.1), precluding 

model training and application by region. Model spatial stratification by using additionally ecoregion 

did not produce clearly better results in early experiments. 

In the “simplified-legend classification”, in addition to the crowdsourced land cover/land use classes 

(Undisturbed Forest, Logged Over Forest, Oil Palm Monoculture, Tree Based Not Oil Palm, Cropland, 

Shrub, and Grass/Savanna), to create a spatially-complete map, classes were added to the 

classification scenario namely Waterbody, Settlement, and Cleared Land. The crowdsourcing activities 

interpret very high (sub-meter) spatial resolution image (VHSR) chips acquired in 2018, and thus 

classification model training and application were both based on satellite data for 2018. The 

classification model training and application was applied for the whole country i.e., not stratified by 

region as in the “detailed-legend classification” to ensure adequate quantity, representativeness, and 

class-balance (allocation) in the training data. 

2.1  Training Data 

The training data for the supervised classification was collated from our country partner i.e. generated 

from their land cover product (which mapped various classes but targeted specifically agroforestry), 

as well as from crowdsourcing initiatives (details in separate publication under review). For the 

“detailed-legend classification”, from the “country reference map”, 10000 training sample points 

(pixels) per class, per region, and per binary classification scenario (Chapter 2.3) were generated. The 

“detailed-legend” training sample is available as Earth Engine feature collection assets. To minimize 

class label error in sampled training points, the “country reference map” was beforehand filtered to 
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remove pixels with patch size smaller than 20th percentile patch size for the same class and region, as 

well as pixels where tree cover loss was detected between 2010 and 2018 based on Global Forest 

Change dataset (Hansen et al. 2013). In addition, as using training data from the “country reference 

map” was observed to produce substantially overestimated area for Rubber Monoculture, alternative 

training data for Rubber Monoculture was obtained based on WRI Tree Plantation database (Harris, 

Goldman, and Gibbes 2019). 

For the “simplified-legend classification”, the crowdsourced training data were quality-filtered. There 

are different ways to filter crowdsourcing data, and in this version, different filters were tested in 

terms of number of annotations (unique-annotators) of either 3, 4, 5 or 6, and in terms of the weighted 

majority score threshold of 0.5 or 0.8 (0 being consensus “no” answer by the crowd i.e. rejecting the 

class label, 1 being consensus “yes” i.e. confirming the class label of the given sample, the weights 

being the annotator’s reliability score calculated based on expert agreement i.e. their agreement with 

expert-annotated control set (details in separate publication under review)). Based on inspecting the 

total area and spatial distribution of the classes countrywide, minimum number of annotations of six, 

and weighted majority score threshold of 0.8 were determined to filter the crowdsourced data for 

high-quality training sample. To complete the class scheme, training data for Waterbody, Settlement, 

and Cleared Land, were obtained, respectively, from the JRC Global Surface Water layer (Pekel et al. 

2016), Facebook High Resolution Settlement layer (CIESIN 2016), and the “country reference map”. 

The “simplified-legend” training sample is available as Earth Engine feature collection assets.  

 

2.2  Classification Input Feature Space 

As the “country reference map” was available for 2010, satellite remote sensing datasets from Landsat 

and ALOS-PALSAR archive were the primary covariates (features) datasets.  

For multispectral optical Landsat data, all images of Landsat 5 [L5] Thematic Mapper (TM), Landsat 7 

[L7] Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 [L8] Operational Land Imager (OLI) 30m 

surface reflectance product (Collection 1) produced by NASA and USGS and available in Google Earth 

Engine were used. In prioritizing spatial coverage completeness using annual observations, all scenes 

with any amount of scene-level cloud cover spanning the whole one-year period were used, which 

amount to a total of 253 path-rows, representing 5978 Landsat images (2423 ETM+ images, 3555 OLI 

images) for 2018, and 2040 Landsat images (405 TM images, 1635 ETM+ images) for 2010, were 

processed in Google Earth Engine platform. Image pre-processing were applied namely edge masking 

(5.5 km), clouds and cloud shadows masking (using accompanying Landsat QA i.e., FMask), BRDF 

correction and terrain correction (Poortinga et al. 2019). OLI sensor data were harmonized with 

respect to TM and ETM+ sensors (Roy et al. 2016). Spectral indices were derived from the surface 

reflectance, namely Normalized Difference Vegetation Index (NDVI = (NIR - red) / (NIR + red)) (USGS 

n.d.), Normalized Difference Water Index (NDWI = (NIR - SWIR1)/(NIR + SWIR1)) (Sinergise n.d.), 

Normalized Burn Ratio (NBR = (NIR - SWIR2)/(NIR + SWIR2)) (USGS n.d.), Soil-Adjusted Vegetation 

Index (SAVI = (1 + L) × (NIR - red)/(NIR + red + L); L = 0.9) (USGS n.d.), and Enhanced Vegetation Index 

2 (EVI2 = (2.5 × (NIR - red)/(NIR + 2.4 × red + 1)) (USGS n.d.).  Spectral indices based on fractional 

cover from spectral mixture analysis were tested and were found to have minor importance 

(classifier’s feature importance) in early experiments, which however might suggest the need for 
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locally-retrieved endmembers. The per-pixel time series were then temporally-reduced into median 

and different percentile values (Table 2.1), the latter to capture temporal signature potentially helpful 

for classes with intra-annual reflectance dynamic. Compositing with smaller time window e.g., seasons 

or months were found to result in excessive no data areas due to the persistent cloud cover in the 

region. In total, 36 features (bands) were derived from Landsat data, including the original reflectance 

bands. Texture features derived from the panchromatic band were attempted but judged to be visibly 

too noisy to be useful in automated classification. 

Table 2.1 Input feature space for land cover/land use classification model: radiometric features 

Platform/sensor Year Features Remark about generated asset 

Landsat 5 (TM), 

Landsat 7 

(ETM+), Landsat 

8 (OLI) 

2010, 

2018 

Annual median and percentiles (10th, 25th, 

75th, 90th) of red, green, NIR, SWIR1, and 

SWIR2 surface reflectance; annual median 

of blue surface reflectance; annual median 

of spectral indices (NDVI, NDWI, NBR, SAVI, 

and EVI2)  

Spatial resolution 30m; values were multiplied by 

scaling factor 10000. 

ALOS PALSAR 2010, 

2017 

Data readily available as annual mosaic; HH 

backscatter, HV backscatter, derived 

HH/HV backscatter ratio, HH/HV texture 

features (contrast, variance, entropy, 

correlation, sum average) 

Texture: To minimize data size, contrast and variance 

values were rescaled based on estimated min and 

max, then multiplied by 65535; 

Entropy was multiplied by 10000; Correlation was 

multiplied by 10000 add added by 20000. 

Sentinel-1 (not 

used in final 

classification in 

the current 

version) 

2018 Annual percentiles (10th, 20th, 30th, 40th, 

60th, 70th, 80th, 90th) of VV and VH 

backscatter; seasonal (rainy or dry) mean 

and median of VV and VH backscatter; 

texture features (contrast, variance, 

entropy, correlation, sum average) applied 

to VV/VH backscatter ratio  

Annual and seasonal composites/features: values 

were multiplied by scaling factor 100 

Texture: same scaling and offset were applied as for 

ALOS PALSAR texture above. 

 

Annual and seasonal composites/features were 

spatially resampled to Landsat 30m grid. 

 

Texture features were computed at 10m. 

 

For L-band radar ALOS-PALSAR data, the global 25m PALSAR/PALSAR-2 mosaic available in Google 

Earth Engine was used. No data, radar layover, and radar shadowing values were removed based on 

the QA layer. HH/HV backscatter ratio was derived from the HH and HV backscatter. Texture features 

(GLCM) were derived from the HH/HV ratio, with neighbourhood size of 11-by-11 pixels. In total, 8 

features were derived from this dataset. 

Sentinel-1 C-band radar data were tested but in the present investigation were found to not provide 

clear improvements in the final land cover/land use map considering all detailed-legend classes, and 

thus not included in the current version. However, their use for a targeted area and specific land cover 

types remains for future investigations, and the available Sentinel-1 features datasets are described 

here. Sentinel-1 data available in Google Earth Engine were used. Scenes with instrument mode IW 

and descending pass, with acquisition in the target mapping demonstration year i.e., 2018 were used. 

Minor preprocessing to remove edges and stripes were applied. Speckle filtering was not applied, as 

multitemporal averaging helps to reduce speckle noise. Two types of compositing were performed 

namely annual compositing and seasonal (rainy season and dry season) compositing. Both composites 

were resampled to Landsat grid (30m). The annual compositing provides temporal features in terms 

of 10th, 20th, 30th, 40th, 60th, 70th, 80th, and 90th percentile values from the temporal distribution. 

Monthly compositing was found to result in considerable missing data in some parts at national scale. 

The seasonal compositing reduces the data into their temporal mean and median. Both VV and VH 
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backscatters were used, and VV/VH backscatter ratio was derived. Finally, texture features (GLCM) 

were derived from VV/VH backscatter dry-season median composite, at 10m resolution, with 

neighbourhood size of 11-by-11 pixels. In total, 29 features were derived from Sentinel-1. 

 

In the expert interpretation workshop with the local experts, it was observed that the expert 

interpreters relied on other diagnostics than visual appearance of the sample in the image, namely 

location of the sample with respect to roads (in particular to determine logged-over forests versus 

undisturbed forests (see examples), rivers, and coasts. As part of the efforts to design automated 

features that represent the local expert interpreters human heuristics, a set of ancillary (non-

radiometric) features (Table 2.2) were included in the feature space. The ancillary features include 

topographic variables (SRTM elevation, and derived slope and aspect), distance to main roads (), 

distance to all roads (based on combined Open Street Map roads and road map in national 

topographic database(BIG n.d.)), distance to human settlement (High Resolution Settlement Layer by 

Facebook Research (CIESIN 2016)), distance to rivers (based in river map in national topographic 

database (BIG n.d.)), and distance to coast (based on Natural Earth coastline map (Natural Earth n.d.)). 

It is recognized that a possible issue is that these ancillary maps are typically not updated i.e. the 

ancillary features are year-invariant, however these features were considered critical for classes in the 

detailed-legend that likely could not be classified solely based on spectral separability (as indicated by 

the visual interpretation process demonstrated by the local experts mentioned above).  

 

Altogether, a total of 53 features were used in classification. Feature selection was not performed as 

tests using BORUTA random forest feature selection algorithm led to all or almost all features deemed 

important in each binary classification scenario (Chapter 2.3) and possible impact of label noise in 

training sample. A special case was for the binary classification scenario with Rubber Monoculture 

training sample from WRI Tree Plantation database, as the training sample is not spatially exhaustive 

(not all plantations are possibly mapped) unlike the case of sampling training sample from the country 

reference map, it was necessary to use only radiometric features (not including ancillary features) for 

this particular binary classification scenario. 

Table 2.2. Input feature space for land cover/land use classification model: ancillary features 

Feature/covariate Reference data source 

Elevation SRTM: USGS/SRTMGL1_003 (Earth Engine data catalog) 

Slope SRTM:. USGS/SRTMGL1_003 (Earth Engine data catalog) 

Aspect SRTM:. USGS/SRTMGL1_003 (Earth Engine data catalog) 
Distance to main roads National topographic database (RBI) 

Distance to all roads National topographic database (RBI) and Open Street Map 

Distance to river  National topographic database (RBI) 

Distance to settlement National topographic database (RBI); Facebook High Resolution Settlement Layer 

Distance to coast Natural Earth coastline 

 

2.3  Classification Strategy and Algorithm 

For the classification strategy, building a classifier to separate all the detailed-legend classes at once 

faces the challenge of unclear class separability (decision boundary) due to substantial intra-class 

landscape heterogeneity and thus intra-class spectral variability higher than inter-class variability, 

unavoidable label noise/errors in the training data from imperfect reference map and imperfect 

https://hadicu06.users.earthengine.app/view/inspect-crowd-vs-experts-interpretation
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crowdsourced labels, and residual noise (from imperfect image preprocessing e.g., cloud masking) in 

the features. Early experiments with hierarchical classification (classifying four classes namely Forest, 

Tree Based, Not Tree Based, and Not Vegetation at first level, then classifying detailed classes for each 

of the four classes at higher levels) were judged to provide substantial errors at first level which would 

then propagate (remain uncorrected) to the classification of the higher level legends. Therefore, the 

approach of decomposing the multiclass classification problem into binary (one-vs-others) 

classification for each class, as demonstrated in (Saah et al. 2020), was adopted. This binary 

classification approach also has the advantage of being modularized to allow easy update of any class 

individually as more/better training data or/and map for that class or/and image preprocessing and 

engineered features or/and expert rules becomes available, as well as facilitates custom integration 

of the per-class probability maps into custom multiclass legend (typology) as demonstrated in (Saah 

et al. 2020).  

For the classification algorithm, Random Forest algorithm available in Google Earth Engine was used. 

Based on early classification experiments, to maximize test set accuracy the hyperparameters of the 

Random Forest classifier were set as follows: number of decision trees to create equals 100, number 

of variables per split equals one-third of the total number of features, and minimum leaf population 

(i.e., the number of samples at a node to stop further splitting and make that node) equals 5. The 

output of the Random Forest classification is the class probability in each binary classification scenario 

(per class and per region for “detailed-legend” classification, per class for “simplified-legend” 

classification). The class probability is the proportion of trees in the forest that have chosen this label.  

The final most confident hard class label is subsequently determined using “Winner-Takes-All” 

strategy (Duan et al. 2003)  which assigns it to the class with the largest predicted probability (related 

to decision function value). Note here the probability is from separate binary classifiers and thus 

strictly speaking does not represent multiclass probability; it is however considered acceptable as the 

interest here is in the class which the classifier is most confident about in separating that class from 

the rest of the classes (i.e., of importance is the rank, instead of absolute value of confidence). This 

was done partly as multiclass probability output in Google Earth Engine platform was not available at 

the time of the study, which is the case now and hence remains for future investigation. 

To integrate class probability maps from the “detailed-legend classification” and “simplified-legend 

classification”, a sequence of integration rules was defined. Expert rules are typically necessary in 

automated classification of a complex land cover typology (Buchhorn et al. 2020). The rules were 

determined based on preliminary feedback on the map, from local experts regarding apparent 

systematic misclassification of certain classes, and the classes in the “simplified-legend classification” 

that were assessed to be acceptably reliable (through visual examination of the spatial abundance and 

distribution of the classes, and comparison of the class area with respect to reference map). The 

expectation is that the “simplified-legend classification” is more accurate because the labels of the 

training sample are verified by humans i.e., the crowd annotators, provided that the class is relatively 

easy to be visually interpreted by likely inexperienced interpreters. The “simplified-legend” classified 

map then was used to correct the “detailed-legend” classified map. The highest probability class 

(primary classification) and the second highest probability class (secondary classification) from the 

“detailed-legend classification” (training data from “country reference map”) alone, although 

methodologically more straightforward, were assessed to be not acceptably reliable. For areas 

superimposed with most likely (maximum probability) class in the “simplified-legend classification” 
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incorporating crowdsourced training data, no secondary classification was currently assigned as the 

“simplified-legend classification” was done for coarse classes and therefore the next highest 

probability class was not appropriate for the “detailed-legend” map intended. 

The current version of integration rules are as follows. The integration rules were applied separately 

for the highest probability class (primary classification), and for the second highest probability class 

(secondary classification). 

• Rule for forest classes: It was observed that some large forest areas were misclassified as 

Plantation Forest. To correct this, “Simplified-legend” predicted “forests” (“undisturbed 

forest” and “logged over forest” classes were merged) which overlays with GLAD Primary 

Humid Tropical Forest 2001 (Turubanova, Tyukavina, and Hansen 2018) were considered to 

be high-confidence forest prediction. Pixels in “detailed-legend classification” that were not 

predicted as forest class but fall in the high-confidence forest map were then corrected as the 

forest class (class id 1 to 6 in “detailed legend”) which has the highest predicted probability. 

• Rule for Oil Palm Monoculture: Oil Palm Monoculture in “simplified-legend” classified map 

was superimposed on top of the “detailed-legend” classified map. Oil Palm Monoculture 

pixels in the “detailed-legend” classified map that were not Oil Palm Monoculture in the 

“simplified-legend” classified map were replaced with the next highest probability class 

(“detailed-legend classification”), excluding from the possible class the classes for which 

expert rules were applied (i.e., Oil Palm Monoculture, natural forest classes (class id 1 to 6 in 

detailed legend), Cropland, Settlement, and Waterbody. 

• Rule for Cropland: similar to the rule for Oil Palm Monoculture above, but for Cropland. 

• Rule for wetland forest classes: wetland forest pixels predicted in the “detailed-legend” 

classified map which fall outside the Wetlands landform (link) had their labels replaces with 

the next most probable class (“detailed-legend classification”), excluding from the possible 

class the classes for which expert rules were applied (i.e., Oil Palm Monoculture, natural forest 

classes (excluding wetland forest), Cropland, Settlement, and Waterbody. 

• Rule for Waterbody: similar to the rule for Oil Palm Monoculture and Cropland above, but for 

Waterbody prediction in “simplified-legend” classified map. 

• Rule for Settlement: similar to the rule for Oil Palm Monoculture, Cropland, and Waterbody 

above, but for Settlement prediction in the “simplified-legend” classified map. 

In the absence of large sample size of ground truth labels to create spatial accuracy map (which is a 

true indicator of classification quality), the class probability is an alternative to provide a measure of 

classification uncertainty (or confidence) on a per-pixel basis (Canters 1997), which is useful in that it 

depicts the spatial structure of the uncertainty. Two common measures of uncertainty namely “least 

confidence” and “margin of confidence” (Monarch 2021). It has been shown that the classifier 

confidence is related to classification accuracy for high confidence values (Inglada et al. 2017). “Least 

confidence” uncertainty was calculated as one minus the class probability of the “primary 

classification” i.e., most-likely or classified highest-probability class label), and the “margin of 

confidence” uncertainty was calculated as the difference between the class probability of the “primary 

classification” and the class probability of the “secondary classification”, the latter being the second-

most-likely or second-highest-probability class label. Note that the classification uncertainty, and in 

turn confidence, here was based on binary classifier confidence and not from a single probability 

https://glad.umd.edu/dataset/primary-forest-cover-loss-indonesia-2000-2012
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distribution with all the classes as possible outcome considered, and thus they should be treated 

qualitatively, and that the “margin of confidence” is more reliable than “least confidence”; in future 

works the classification uncertainty based on a single multiclass probability distribution constructed 

from the binary classification probabilities (Duan et al. 2003)  is to be investigated. 
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The presented methodology serves as a pilot demonstration of national-scale land cover/land use 

mapping in Indonesia targeting highly detailed typology required for the purpose of restoration 

assessment under the RESTORE+ project, with a methodology designed to employ cloud computing 

(Google Earth Engine platform) and crowdsourced training data and to be modularized, as well as to 

produce per-pixel classification uncertainty. A main limitation has been high quality (low rate of label 

errors) training sample datasets that satisfy the class legend requirements and are representative of 

the whole mapping domain i.e., the large classification region, with the vast spatial heterogeneity in 

natural landscape features and land management/use practices. Thus, it should be acknowledged that 

the full potential of the methodology likely has not been realized, and further improvements 

(iterations) to this first version of the results are needed as a stepwise approach, which are hopefully 

facilitated after the datasets, code, and tool (app) are made available. Particularly, the machine 

learning feedback aided interactive training data digitization tool (link) can be helpful to efficiently 

collect training sample polygons targeting certain problematic classes or areas of systematic 

misclassification, which is best done in a collaborative manner with a network of local/regional land 

cover experts. These training data can then be used to general an updated version of class probability 

for the classes or/and areas of interest. 

Given the challenge for machine learning to map the detailed legend in the present work, among 

others, and that validation/accuracy assessment of the map is ongoing, caution needs to be exercised 

in the fit-for-purpose-ness usage of the current version of the result. It is recommended to use local 

reference data to estimate unbiasedly the class area and their uncertainties (confidence interval) in a 

targeted area to account for unavoidable misclassification errors, following good practices (Olofsson 

et al. 2014). In the absence of reference data for the area of interest, the predicted class probability 

may be used to estimate the class area and uncertainties via Monte Carlo simulation procedure in 

which multiple realizations of land cover/land use maps were generated (Canters 1997). 

Considering the method of determining the final most-confident class label, based on the class 

probability predicted by the set of binary classifiers, a simple approach of considering the maximum 

probability (thus highest-ranked in likelihood) class as the final hard class label was chosen. That is, 

the trained classifier is most confident about that class in their separation from the rest of the classes. 

A better approach, requiring local reference data for a targeted area, would be to train a secondary 

supervised classifier such as decision tree to learn the optimal mapping between the class probabilities 

and the ground truth hard class labels. In the absence of local reference data, the decision tree to 

combine the class probabilities (sequence of rules with the classes and thresholds on their class 

probability values) into final hard class label can be determined via expert-defined rules incorporating 

local knowledge and visual examination (Saah et al. 2020). Reference information of class area such 

as government statistics can also be used in calibrating the class probability threshold. 

A special remark of caution is needed for the important separation between undisturbed forest 

classed and the logged-over forest classes. It was observed from the local-expert interpretation 

activities, that in inferring whether a forest sample is undisturbed or logged, the signs of human 

https://hadicu06.users.earthengine.app/view/interactive-classification-eng
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activities needed to be searched within a large radius from the forest sample location, and the class 

determination decision was augmented by the local experts’ knowledge of the legal status of the 

forest estate (which map is unavailable/inaccessible). As a fixed or variable-within-strata (regions) 

criterion such as distance to roads could not be determined in local-experts group discussion, here the 

undisturbed vs logged-over forests classification relied on a data mining approach, where the machine 

learning model learns the implicit rules (pertaining to covariates such as distance to roads) in the 

country reference map in which the map encodes the human rules of the local expert who supervised 

the map production. Logging practices are expected to vary, and here the implicit rules were learned 

separately for each of the seven classification regions; more detailed spatial stratification of the model 

might be necessary, however the extent the logging practices vary in space is not known well to inform 

the stratification. Note however the spectral response may play a role in discriminating between 

logged-over forests and undisturbed forests. 

The crowdsourced training and validation data is documented, evaluated, and to be released in a 

separate publication (under review). The data contains additional label quality indicators including the 

annotator’s control set agreement, inter-annotator agreement, and intra-annotator agreement, 

which were used to estimate the label uncertainty. Experiments on how to best utilize the 

crowdsourced training data for downstream impact on classifier quality, through different quality 

filtering (trade-off between label quantity and geographical diversity on one hand, and label overall 

noise level on the other hand), remains to be investigated. 

Opportunities to improve the map also exist in the image pre-processing and feature engineering 

steps. In the current version, the Landsat compositing time window was limited to one calendar year, 

which was partly for computational reason and for design towards annual update frequency; 

combining data from adjacent years (3-year window; observations can weighted by year) and filtering 

out scenes with majority cloud cover, should result in “cleaner” (from residual unmasked clouds and 

shadows) composite image features. Testing the methodology for later years when Sentinel-2 surface 

reflectance product became available (e.g., from 2020 onwards) can be of interest as the temporal 

density of the observations will be much higher, however cloud masking is a major challenge with 

Sentinel-2, and the training sample needs to be filtered for land cover change. In a collaborative 

setting, the Landsat composites can be made spatially optimized, such as by experimenting through 

the composite explorer (Landsat and Sentinel-2) app (link). To note is that Landsat Collection 1 used 

in the current version is currently deprecated and thus the methodology should migrate to use the 

improved Landsat Collection 2 also readily available in Google Earth Engine platform. Sentinel-1 ARD 

with additional important radiometric terrain normalization step now possible to be generated in 

Google Earth Engine platform (Mullissa et al. 2021) presents an untapped opportunity.  In the 

postprocessing step, a simple 3-by-3 pixels spatial window majority filter was applied, a more refined 

(requiring local landscape knowledge for it to be justified) postprocessing by class-specific or/and 

region-specific land cover patch minimum size filter can be recommended. Nevertheless, it is foreseen 

that improving the training sample (as was demonstrated in the use of WRI Tree Plantation database 

for Rubber Monoculture training data; or the more reasonable spatial distribution of cropland 

probability based on crowdsourced training data as compared to training data labels directly from the 

reference map) for all the required classes, or/and the expert rules in integrating the class probability 

layers, would be the most impactful effort in terms of improving map accuracy, to be given highest 

priority in future iterations of the product.  

https://hadicu06.users.earthengine.app/view/composites-explorer
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